domingo, 25 de dezembro de 2011

Mecânica Celeste

A mecânica celeste é o ramo da astronomia que estuda os movimentos dos corpos celestes (naturais ou não). A principal força determinante dos movimentos celestes é a gravitação, contudo certos corpos (satélites artificiais, cometas e asteróides) podem sofrer a influência marcante de forças não gravitacionais como a pressão de radiação e o atrito (com a atmosfera superior no caso dos satélites artificiais terrestres). A astronáutica está intimamente ligada a esta ciência.

OBJETIVO

objetivo da Mecânica Celeste, como o da Astrometria, é o de determinar as posições relativas dos astros e suas variações com o tempo, mas diferentemente da Astrometria, a Mecânica Celeste faz esse estudo baseada principalmente nos dados da Astrometria e na parte teórica fornecida pela Mecânica Clássica.

A Mecânica Celeste é, pois, a parte da Astronomia que visa estudar o movimento relativo dos astros que estão submetidos às forças admitidas como resultantes da atração gravitacional entre esses corpos celestes. Assim, podemos dizer que a Mecânica Celeste estuda os movimentos relativos dos astros, aplicando as leis da Mecânica Newtoniana.

FUNCIONALIDADE

O mecânico celeste é capaz de calcular as distâncias e as posições dos astros do Sistema Solar, determinar massas de estrelas pertencentes a Sistemas Estelares distantes, calcular órbitas de satélites artificiais em torno da Terra, determinar as trajetórias de sondas espaciais enviadas a outros astros do Sistema Solar e outros. É com a Mecânica Celeste que se pode determinar as massas de corpos celestes, tais como planetas, satélites e estrelas.


http://pt.wikipedia.org/wiki/Mec%C3%A2nica_celeste#Movimento_dos_planetas

segunda-feira, 5 de outubro de 2009

geometria

O conceito de esfera
A esfera no espaço R³ é uma superfície muito importante em função de suas aplicações a problemas da vida. Do ponto de vista matemático, a esfera no espaço R³ é confundida com o sólido geométrico (disco esférico) envolvido pela mesma, razão pela qual muitas pessoas calculam o volume da esfera. Na maioria dos livros elementares sobre Geometria, a esfera é tratada como se fosse um sólido, herança da Geometria Euclidiana.
Embora não seja correto, muitas vezes necessitamos falar palavras que sejam entendidas pela coletividade. De um ponto de vista mais cuidadoso, a esfera no espaço R³ é um objeto matemático parametrizado por duas dimensões, o que significa que podemos obter medidas de área e de comprimento mas o volume tem medida nula. Há outras esferas, cada uma definida no seu respectivo espaço n-dimensional. Um caso interessante é a esfera na reta unidimensional:
So = {x em R: x²=1} = {+1,-1}
Por exemplo, a esfera
S1 = { (x,y) em R²: x² + y² = 1 }
é conhecida por nós como uma circunferência de raio unitário centrada na origem do plano cartesiano.
Aplicação: volumes de líquidos
Um problema fundamental para empresas que armazenam líquidos em tanques esféricos, cilíndricos ou esféricos e cilíndricos é a necessidade de realizar cálculos de volumes de regiões esféricas a partir do conhecimento da altura do líquido colocado na mesma. Por exemplo, quando um tanque é esférico, ele possui um orifício na parte superior (polo Norte) por onde é introduzida verticalmente uma vara com indicadores de medidas. Ao retirar a vara, observa-se o nível de líquido que fica impregnado na vara e esta medida corresponde à altura de líquido contido na região esférica. Este não é um problema trivial, como observaremos pelos cálculos realizados na sequência.

A seguir apresentaremos elementos esféricos básicos e algumas fórmulas para cálculos de áreas na esfera e volumes em um sólido esférico.
A superfície esférica
A esfera no espaço R³ é o conjunto de todos os pontos do espaço que estão localizados a uma mesma distância denominada raio de um ponto fixo chamado centro.
Uma notação para a esfera com raio unitário centrada na origem de R³ é:
S² = { (x,y,z) em R³: x² + y² + z² = 1 }
Uma esfera de raio unitário centrada na origem de R4 é dada por:
S³ = { (w,x,y,z) em R4: w² + x² + y² + z² = 1 }
Você conseguiria imaginar espacialmente tal esfera?
Do ponto de vista prático, a esfera pode ser pensada como a película fina que envolve um sólido esférico. Em uma melancia esférica, a esfera poderia ser considerada a película verde (casca) que envolve a fruta.
É comum encontrarmos na literatura básica a definição de esfera como sendo o sólido esférico, no entanto não se deve confundir estes conceitos. Se houver interesse em aprofundar os estudos desses detalhes, deve-se tomar algum bom livro de Geometria Diferencial que é a área da Matemática que trata do detalhamento de tais situações.

O disco esférico é o conjunto de todos os pontos do espaço que estão localizados na casca e dentro da esfera. Do ponto de vista prático, o disco esférico pode ser pensado como a reunião da película fina que envolve o sólido esférico com a região sólida dentro da esfera. Em uma melancia esférica, o disco esférico pode ser visto como toda a fruta.
Quando indicamos o raio da esfera pela letra R e o centro da esfera pelo ponto (0,0,0), a equação da esfera é dada por:
x² + y² + z² = R²
e a relação matemática que define o disco esférico é o conjunto que contém a casca reunido com o interior, isto é:
x² + y² + z² < R²
Quando indicamos o raio da esfera pela letra R e o centro da esfera pelo ponto (xo,yo,zo), a equação da esfera é dada por:
(x-xo)² + (y-yo)² + (z-zo)² = R²
e a relação matemática que define o disco esférico é o conjunto que contém a casca reunido com o interior, isto é, o conjunto de todos os pontos (x,y,z) em R³ tal que:
(x-xo)² + (y-yo)² + (z-zo)² < R²
Da forma como está definida, a esfera centrada na origem pode ser construída no espaço euclidiano R³ de modo que o centro da mesma venha a coincidir com a origem do sistema cartesiano R³, logo podemos fazer passar os eixos OX, OY e OZ, pelo ponto (0,0,0).

Seccionando a esfera x²+y²+z²=R² com o plano z=0, obteremos duas superfícies semelhantes: o hemisfério Norte ("boca para baixo") que é o conjunto de todos os pontos da esfera onde a cota z é não negativa e o hemisfério Sul ("boca para cima") que é o conjunto de todos os pontos da esfera onde a cota z não é positiva.
Se seccionarmos a esfera x²+y²+z²=R² por um plano vertical que passa em (0,0,0), por exemplo, o plano x=0, teremos uma circunferência maximal C da esfera que é uma circunferência contida na esfera cuja medida do raio coincide com a medida do raio da esfera, construída no plano YZ e a equação desta circunferência será:
x=0, y² + z² = R2
sendo que esta circunferência intersecta o eixo OZ nos pontos de coordenadas (0,0,R) e (0,0,-R). Existem infinitas circunferências maximais em uma esfera.
Se rodarmos esta circunferência maximal C em torno do eixo OZ, obteremos a esfera através da rotação e por este motivo, a esfera é uma superfície de revolução.
Se tomarmos um arco contido na circunferência maximal cujas extremidades são os pontos (0,0,R) e (0,p,q) tal que p²+q²=R² e rodarmos este arco em torno do eixo OZ, obteremos uma superfície denominada calota esférica.

Na prática, as pessoas usam o termo calota esférica para representar tanto a superfície como o sólido geométrico envolvido pela calota esférica. Para evitar confusões, usarei "calota esférica" com aspas para o sólido e sem aspas para a superfície.
A partir da rotação, construiremos duas calotas em uma esfera, de modo que as extremidades dos arcos sejam (0,0,R) e (0,p,q) com p²+q²=R² no primeiro caso (calota Norte) e no segundo caso (calota Sul) as extremidades dos arcos (0,0,-R) e (0,r,-s) com r²+s²=R² e retirarmos estas duas calotas da esfera, teremos uma superfície de revolução denominada zona esférica.

De um ponto de vista prático, consideremos uma melancia esférica. Com uma faca, cortamos uma "calota esférica" superior e uma "calota esférica" inferior. O que sobra da melancia é uma região sólida envolvida pela zona esférica, algumas vezes denominada zona esférica.
Consideremos uma "calota esférica" com altura h1 e raio da base r1 e retiremos desta calota uma outra "calota esférica" com altura h2 e raio da base r2, de tal modo que os planos das bases de ambas sejam paralelos. A região sólida determinada pela calota maior menos a calota menor recebe o nome de segmento esférico com bases paralelas.

No que segue, usaremos esfera tanto para o sólido como para a superfície, "calota esférica" para o sólido envolvido pela calota esférica, a letra maiúscula R para entender o raio da esfera sobre a qual estamos realizando os cálculos, V será o volume, A(lateral) será a área lateral e e A(total) será a área total.
Algumas fórmulas (relações) para objetos esféricos
Objeto
Relações e fórmulas
Esfera
Volume = (4/3) Pi R³A(total) = 4 Pi R²
Calota esférica(altura h, raio da base r)
R² = h (2R-h)A(lateral) = 2 Pi R hA(total) = Pi h (4R-h)V=Pi.h²(3R-h)/3=Pi(3R²+h²)/6
Segmento esférico(altura h, raios das bases r1>r²)
R² = a² + [(r1² -r2²-h²)/2h)]²A(lateral) = 2 Pi R hA(total) = Pi(2Rh+r1²+r2²)Volume=Pi.h(3r1²+3r2²+h²)/6
Estas fórmulas podem ser obtidas como aplicações do Cálculo Diferencial e Integral, mas nós nos limitaremos a apresentar um processo matemático para a obtenção da fórmula do cálculo do volume da "calota esférica" em função da altura da mesma.
Volume de uma calota no hemisfério Sul
Consideremos a esfera centrada no ponto (0,0,R) com raio R.

A equação desta esfera será dada por:
x² + y² + (z-R)² = R²
A altura da calota será indicada pela letra h e o plano que coincide com o nível do líquido (cota) será indicado por z=h. A interseção entre a esfera e este plano é dado pela circunferência
x² + y² = R² - (h-R)²
Obteremos o volume da calota esférica com a altura h menor ou igual ao raio R da esfera, isto é, h pertence ao intervalo [0,R] e neste caso poderemos explicitar o valor de z em função de x e y para obter:

Para simplificar as operações algébricas, usaremos a letra r para indicar:
r² = R² - (h-R)² = h(2R-h)
A região circular S de integração será descrita por x²+y²0A integral dupla que representa o volume da calota em função da altura h é dada por:

ou seja

Escrita em Coordenadas Polares, esta integral fica na forma:

Após realizar a integral na variável t, podemos separá-la em duas integrais:

ou seja:

Com a mudança de variável u=R²-m² e du=(-2m)dm poderemos reescrever:

Após alguns cálculos obtemos:
VC(h) = Pi (h-R) [R² -(h-R)²] - (2/3)Pi[(R-h)³ - R³]
e assim temos a fórmula para o cálculo do volume da calota esférica no hemisfério Sul com a altura h no intervalo [0,R], dada por:
VC(h) = Pi h²(3R-h)/3
Volume de uma calota no hemisfério Norte
Se o nível do líquido mostra que a altura h já ultrapassou o raio R da região esférica, então a altura h está no intervalo [R,2R]

Lançaremos mão de uma propriedades de simetria da esfera que nos diz que o volume da calota superior assim como da calota inferior somente depende do raio R da esfera e da altura h e não da posição relativa ocupada.
Aproveitaremos o resultado do cálculo utilizado para a calota do hemisfério Sul. Tomaremos a altura tal que: h=2R-d, onde d é a altura da região que não contém o líquido. Como o volume desta calota vazia é dado por:
VC(d) = Pi d²(3R-d)/3
e como h=2R-d, então para h no intervalo [R,2R], poderemos escrever ov olume da calota vazia em função de h:
VC(h) = Pi (2R-h)²(R+h)/3
Para obter o volume ocupado pelo líquido, em função da altura, basta tomar o volume total da região esférica e retirar o volume da calota vazia, para obter:
V(h) = 4Pi R³/3 - Pi (2R-h)²(R+h)/3
que pode ser simplificada para:
V(h) = Pi h²(3R-h)/3
Independentemente do fato que a altura h esteja no intervalo [0,R] ou [R,2R] ou de uma forma geral em [0,2R], o cálculo do volume ocupado pelo líquido é dado por:
V(h) = Pi h²(3R-h)/3

Atencão: este artigo pertence à http://www.algosobre.com.br/matematica/geometria-espacial-esfera.html

sexta-feira, 24 de julho de 2009

100% matemática

clik aqui

Brian May Doutor em Astronomia

Brian May, lendário guitarrista do QUEEN, em agosto de 2006 ganhou seu doutorado em astronomia pelo London's Imperial College, 36 anos depois de iniciar a sua tese e abandonar a mesma para seguir a carreira musical. Um doutorado "honoris causa" (por mérito, como uma homenagem), sem necessidade de defesa de tese, havia sido concedido anos antes ao músico.

Dessa vez May (que na foto segura o registro de seu trabalho, um ensaio de 48 mil palavras) defendeu o seu doutorado como um acadêmico comum, em uma arguição de três horas.

"Podem me chamar de doutor May. Me sinto confortável em usar o título porque trabalhei por ele. Me sentirei orgulhoso de ser entitulado doutor de agora em diante." declarou o guitarrista ao site da BBC News. Atenção: esse artigo pertence a (http://whiplash.net/materias/curiosidades/064668-queen.html).

quinta-feira, 23 de julho de 2009

Matemática

Galileu Galilei

Galileu Galilei, cientista italiano nascido em 15 de fevereiro de 1564, é considerado o primeiro cientista moderno. Realizando vários experimentos, Galileu chegou às leis matemáticas que descrevem o movimento dos corpos terrestres e revolucionou a Astronomia.


Galileu foi professor de matemática na Universidade de Pádua, onde permaneceu por 18 anos, inventando em 1593 uma máquina para elevar água e uma bomba movimentada por cavalos. São vários os inventos de Galileu.

Em 1609, Galileu ganhou um telescópio que serviu como molde para construir o seu próprio, com lentes mais potentes. Galileu apontou seu telescópio para o céu e, então, surgiram grandes mudanças na Astronomia.

As observações de Galileu lhe renderam grandes descobertas. Galileu descobriu que as nebulosas e a Via Láctea são compostas de incontáveis estrelas. Também observou que a Lua possui grandes montanhas e vales como a Terra e, que Júpiter possui quatro satélites, observação que prova, contrariamente ao sistema de Ptolomeu, a existência de corpos celestes que circundam outro corpo que não a Terra.

Em 1543, Nicolau Copérnico publicou o livro “Sobre a Revolução das Orbes Celestes” onde dizia que os planetas giravam ao redor do Sol. Galileu estudou as teorias de Copérnico e, as de Kepler, que acabara de publicar o livro “Astronomia Nova”. Reuniu uma grande quantidade de evidências para defender a teoria heliocêntrica e as publicou em italiano para divulgar ao público. Por estas publicações podemos dizer que Galileu foi um dos primeiros divulgadores de ciência.

As publicações de Galileu iam contra a interpretação literal da Bíblia pela igreja Católica, onde a Terra era o centro do Universo. Galileu foi convocado a Roma para ser julgado e neste julgamento foi condenado a abjurar publicamente as suas idéias, e condenado a prisão por tempo indefinido. Os livros de Galileu foram censurados e proibidos, mas foram publicados em outros países, onde o protestantismo tinha já substituído o catolicismo.

Galileu Galilei faleceu em 8 de janeiro de 1642, perto de Florença onde está enterrado na Igreja da Santa Cruz. Apenas em 1822 foram retiradas do Índice de livros proibidos as obras de Copérnico, Kepler e Galileo, e em 1980, o Papa João Paulo II ordenou um re-exame do processo contra Galileu e pois fim a resistência, por parte da igreja Católica, à teoria heliocêntrica. Atenção: esse artigo pertence a (http://www.efeitojoule.com/2009/01/galileu-galilei-e-galileu.html#)

quarta-feira, 22 de julho de 2009

Derivada

No Cálculo, a derivada representa a taxa de variação de uma função. Um exemplo típico é a função velocidade que representa a taxa de variação (derivada) da função espaço. Do mesmo modo a função aceleração é a derivada da função velocidade.

Diz-se que uma função f é derivável (ou diferenciável) se, próximo de cada ponto a do seu domínio, a função f(x) − f(a) se comportar aproximadamente como uma função linear, ou seja, se o seu gráfico for aproximadamente uma reta. O declive de uma tal reta é a derivada da função f no ponto a e representa-se por

f'(a)\, ou por \frac{df}{dx}(a).

Assim, por exemplo, se se considerar a função f de R em R definida por f(x) = x² + x − 1, esta é diferenciável em 0. Podem ver-se na imagem abaixo os gráficos das restrições daquela função aos intervalos [−1,1] e [−1/10,1/10] e é claro que, enquanto que o primeiro é bastante curvo (e, portanto, f(x) − f(0) está aí longe de ser linear), o segundo é praticamente indistinguível de um segmento de reta (de declive 1). De facto, quanto mais se for ampliando o gráfico próximo de (0,f(0)) mais perto estará este de ser linear.

Gráfico de uma função derivável.

Em contrapartida, a função módulo de R em R não é derivável em 0, pois, por mais que se amplie o gráfico perto de (0,0), este tem sempre o aspecto da figura abaixo.

Atenção: esse artigo pertence a (http://pt.wikipedia.org/wiki/Derivada).

Física Quântica

Há pouco mais de cem anos, o físico Max Planck, considerado conservador, tentando compreender a energia irradiada pelo espectro da radiação térmica, expressa como ondas eletromagnéticas produzidas por qualquer organismo emissor de calor, a uma temperatura x, chegou, depois de muitas experiências e cálculos, à revolucionária ‘constante de Planck’, que subverteu os princípios da física clássica.

Este foi o início da trajetória da Física ou Mecânica Quântica, que estuda os eventos que transcorrem nas camadas atômicas e sub-atômicas, ou seja, entre as moléculas, átomos, elétrons, prótons, pósitrons, e outras partículas. Planck criou uma fórmula que se interpunha justamente entre a Lei de Wien – para baixas freqüências – e a Lei de Rayleight – para altas freqüências -, ao contrário das experiências tentadas até então por outros estudiosos.

Albert Einsten, criador da Teoria da Relatividade, foi o primeiro a utilizar a expressão quantum para a constante de Planck E = hv, em uma pesquisa publicada em março de 1905 sobre as conseqüências dos fenômenos fotoelétricos, quando desenvolveu o conceito de fóton. Este termo se relaciona a um evento físico muito comum, a quantização – um elétron passa de uma energia mínima para o nível posterior, se for aquecido, mas jamais passará por estágios intermediários, proibidos para ele, neste caso a energia está quantizada, a partícula realizou um salto energético de um valor para outro. Este conceito é fundamental para se compreender a importância da física quântica.

Seus resultados são mais evidentes na esfera macroscópica do que na microscópica, embora os efeitos percebidos no campo mais visível dependam das atitudes quânticas reveladas pelos fenômenos que ocorrem nos níveis abaixo da escala atômica. Esta teoria revolucionou a arena das idéias não só no âmbito das Ciências Exatas, mas também no das discussões filosóficas vigentes no século XX.

No dia-a-dia, mesmo sem termos conhecimento sobre a Física Quântica, temos em nossa esfera de consumo muitos de seus resultados concretos, como o aparelho de CD, o controle remoto, os equipamentos hospitalares de ressonância magnética, até mesmo o famoso computador.

A Física Quântica envolve conceitos como os de partícula – objeto com uma mínima dimensão de massa, que compõe corpos maiores - e onda – a radiação eletromagnética, invisível para nós, não necessita de um ambiente material para se propagar, e sim do espaço vazio. Enquanto as partículas tinham seu movimento analisado pela mecânica de Newton, as radiações das ondas eletromagnéticas eram descritas pelas equações de Maxwell. No início do século XX, porém, algumas pesquisas apresentaram contradições reveladoras, demonstrando que os comportamentos de ambas podem não ser assim tão diferentes uns dos outros. Foram essas idéias que levaram Max Planck à descoberta dos mecanismos da Física Quântica, embora ele não pretendesse se desligar dos conceitos da Física Clássica.

A conexão da Mecânica Quântica com conceitos como a não-localidade e a causalidade, levou esta disciplina a uma ligação mais profunda com conceitos filosóficos, psicológicos e espirituais. Hoje há uma forte tendência em unir os conceitos quânticos às teorias sobre a Consciência.
Físicos como o indiano Amit Goswami se valem dos conceitos da Física moderna para apresentar provas científicas da existência da imortalidade, da reencarnação e da vida após a morte. Professor titular da Universidade de Física de Oregon, Ph.D em física quântica, físico residente no Institute of Noetic Sciences, suas idéias aparecem no filme Quem somos nós? e em obras como A Física da Alma, O Médico Quântico, entre outras. Ele defende a conciliação entre física quântica, espiritualidade, medicina, filosofia e estudos sobre a consciência. Seus livros estão repletos de descrições técnicas, objetivas, científicas, o que tem silenciado seus detratores.

Fritjof Capra, Ph.D., físico e teórico de sistemas, revela a importância do observador na produção dos fenômenos quânticos. Ele não só testemunha os atributos do evento físico, mas também influencia na forma como essas qualidades se manifestarão. A consciência do sujeito que examina a trajetória de um elétron vai definir como será seu comportamento. Assim, segundo o autor, a partícula é despojada de seu caráter específico se não for submetida à análise racional do observador, ou seja, tudo se interpenetra e se torna interdependente, mente e matéria, o indivíduo que observa e o objeto sob análise. Outro renomado físico, prêmio Nobel de Física, Eugen Wingner, atesta igualmente que o papel da consciência no âmbito da teoria quântica é imprescindível. Atenção: esse artigo pertence a (http://www.infoescola.com/fisica/quantica/#).